Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model.

Identifieur interne : 002973 ( Main/Exploration ); précédent : 002972; suivant : 002974

Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model.

Auteurs : Danica Lombardozzi [États-Unis] ; Jed P. Sparks ; Gordon Bonan ; Samuel Levis

Source :

RBID : pubmed:22218943

Descripteurs français

English descriptors

Abstract

Industrialization has significantly altered atmospheric chemistry by increasing concentrations of chemicals such as nitrogen oxides (NO( x )) and volatile organic carbon, which react in the presence of sunlight to produce tropospheric ozone (O(3)). Ozone is a powerful oxidant that causes both visual and physiological damage to plants, impairing the ability of the plant to control processes like photosynthesis and transpiration. Damage to photosynthesis and stomatal conductance does not always occur at the same rate, which generates a problem when using the Ball-Berry model to predict stomatal conductance because the calculations directly rely on photosynthesis rates. The goals of this work were to develop a modeling framework to modify Ball-Berry stomatal conductance predictions independently of photosynthesis and to test the framework using experimental data. After exposure to elevated O(3) in open-top chambers, photosynthesis and stomatal conductance in tulip poplar changed at different rates through time. We were able to accurately model observed photosynthetic and stomatal conductance responses to chronic O(3) exposure in a Ball-Berry framework by adjusting stomatal conductance in addition to photosynthesis. This led to a significant improvement in the modeled ability to predict both photosynthesis and stomatal conductance responses to O(3).

DOI: 10.1007/s00442-011-2242-3
PubMed: 22218943


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model.</title>
<author>
<name sortKey="Lombardozzi, Danica" sort="Lombardozzi, Danica" uniqKey="Lombardozzi D" first="Danica" last="Lombardozzi">Danica Lombardozzi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853, USA. dll29@cornell.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sparks, Jed P" sort="Sparks, Jed P" uniqKey="Sparks J" first="Jed P" last="Sparks">Jed P. Sparks</name>
</author>
<author>
<name sortKey="Bonan, Gordon" sort="Bonan, Gordon" uniqKey="Bonan G" first="Gordon" last="Bonan">Gordon Bonan</name>
</author>
<author>
<name sortKey="Levis, Samuel" sort="Levis, Samuel" uniqKey="Levis S" first="Samuel" last="Levis">Samuel Levis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22218943</idno>
<idno type="pmid">22218943</idno>
<idno type="doi">10.1007/s00442-011-2242-3</idno>
<idno type="wicri:Area/Main/Corpus">002B83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B83</idno>
<idno type="wicri:Area/Main/Curation">002B83</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B83</idno>
<idno type="wicri:Area/Main/Exploration">002B83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model.</title>
<author>
<name sortKey="Lombardozzi, Danica" sort="Lombardozzi, Danica" uniqKey="Lombardozzi D" first="Danica" last="Lombardozzi">Danica Lombardozzi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853, USA. dll29@cornell.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sparks, Jed P" sort="Sparks, Jed P" uniqKey="Sparks J" first="Jed P" last="Sparks">Jed P. Sparks</name>
</author>
<author>
<name sortKey="Bonan, Gordon" sort="Bonan, Gordon" uniqKey="Bonan G" first="Gordon" last="Bonan">Gordon Bonan</name>
</author>
<author>
<name sortKey="Levis, Samuel" sort="Levis, Samuel" uniqKey="Levis S" first="Samuel" last="Levis">Samuel Levis</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Liriodendron (drug effects)</term>
<term>Models, Biological (MeSH)</term>
<term>Ozone (pharmacology)</term>
<term>Photosynthesis (drug effects)</term>
<term>Plant Stomata (drug effects)</term>
<term>Seedlings (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Liriodendron (effets des médicaments et des substances chimiques)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Ozone (pharmacologie)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Plant (effets des médicaments et des substances chimiques)</term>
<term>Stomates de plante (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Liriodendron</term>
<term>Photosynthesis</term>
<term>Plant Stomata</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Liriodendron</term>
<term>Photosynthèse</term>
<term>Plant</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Modèles biologiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Industrialization has significantly altered atmospheric chemistry by increasing concentrations of chemicals such as nitrogen oxides (NO( x )) and volatile organic carbon, which react in the presence of sunlight to produce tropospheric ozone (O(3)). Ozone is a powerful oxidant that causes both visual and physiological damage to plants, impairing the ability of the plant to control processes like photosynthesis and transpiration. Damage to photosynthesis and stomatal conductance does not always occur at the same rate, which generates a problem when using the Ball-Berry model to predict stomatal conductance because the calculations directly rely on photosynthesis rates. The goals of this work were to develop a modeling framework to modify Ball-Berry stomatal conductance predictions independently of photosynthesis and to test the framework using experimental data. After exposure to elevated O(3) in open-top chambers, photosynthesis and stomatal conductance in tulip poplar changed at different rates through time. We were able to accurately model observed photosynthetic and stomatal conductance responses to chronic O(3) exposure in a Ball-Berry framework by adjusting stomatal conductance in addition to photosynthesis. This led to a significant improvement in the modeled ability to predict both photosynthesis and stomatal conductance responses to O(3).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22218943</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>169</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model.</ArticleTitle>
<Pagination>
<MedlinePgn>651-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-011-2242-3</ELocationID>
<Abstract>
<AbstractText>Industrialization has significantly altered atmospheric chemistry by increasing concentrations of chemicals such as nitrogen oxides (NO( x )) and volatile organic carbon, which react in the presence of sunlight to produce tropospheric ozone (O(3)). Ozone is a powerful oxidant that causes both visual and physiological damage to plants, impairing the ability of the plant to control processes like photosynthesis and transpiration. Damage to photosynthesis and stomatal conductance does not always occur at the same rate, which generates a problem when using the Ball-Berry model to predict stomatal conductance because the calculations directly rely on photosynthesis rates. The goals of this work were to develop a modeling framework to modify Ball-Berry stomatal conductance predictions independently of photosynthesis and to test the framework using experimental data. After exposure to elevated O(3) in open-top chambers, photosynthesis and stomatal conductance in tulip poplar changed at different rates through time. We were able to accurately model observed photosynthetic and stomatal conductance responses to chronic O(3) exposure in a Ball-Berry framework by adjusting stomatal conductance in addition to photosynthesis. This led to a significant improvement in the modeled ability to predict both photosynthesis and stomatal conductance responses to O(3).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lombardozzi</LastName>
<ForeName>Danica</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853, USA. dll29@cornell.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sparks</LastName>
<ForeName>Jed P</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bonan</LastName>
<ForeName>Gordon</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Levis</LastName>
<ForeName>Samuel</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>01</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>66H7ZZK23N</RegistryNumber>
<NameOfSubstance UI="D010126">Ozone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031567" MajorTopicYN="N">Liriodendron</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010126" MajorTopicYN="N">Ozone</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22218943</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-011-2242-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 Mar;9(2):331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17357025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 Mar;9(2):320-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17357024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1444-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Apr;134(3):439-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1991 Mar;27(3):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24414689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Oct;137(3):483-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16005760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Mar;24(3):277-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Monit Assess. 2007 May;128(1-3):93-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17180427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1987 Mar;3(1):63-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14975835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2010 Aug;158(8):2664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20537773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 Oct;113(2):249-257</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Nov;26(11):1391-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1980 Jun;149(1):78-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(1):125-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 1989;59(2):161-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15092411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Feb;95(2):529-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1150-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10557363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 16;448(7155):791-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17653194</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bonan, Gordon" sort="Bonan, Gordon" uniqKey="Bonan G" first="Gordon" last="Bonan">Gordon Bonan</name>
<name sortKey="Levis, Samuel" sort="Levis, Samuel" uniqKey="Levis S" first="Samuel" last="Levis">Samuel Levis</name>
<name sortKey="Sparks, Jed P" sort="Sparks, Jed P" uniqKey="Sparks J" first="Jed P" last="Sparks">Jed P. Sparks</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Lombardozzi, Danica" sort="Lombardozzi, Danica" uniqKey="Lombardozzi D" first="Danica" last="Lombardozzi">Danica Lombardozzi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002973 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002973 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22218943
   |texte=   Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22218943" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020